Latent representation learning based autoencoder for unsupervised feature selection in hyperspectral imagery

2021 
In hyperspectral image (HSI) analysis, high-dimensional data may contain noisy, irrelevant and redundant information. To mitigate the negative effect from these information, feature selection is one of the useful solutions. Unsupervised feature selection is a data preprocessing technique for dimensionality reduction, which selects a subset of informative features without using any label information. Different from the linear models, the autoencoder is formulated to nonlinearly select informative features. The adjacency matrix of HSI can be constructed to extract the underlying relationship between each data point, where the latent representation of original data can be obtained via matrix factorization. Besides, a new feature representation can be also learnt from the autoencoder. For a same data matrix, different feature representations should consistently share the potential information. Motivated by these, in this paper, we propose a latent representation learning based autoencoder feature selection (LRLAFS) model, where the latent representation learning is used to steer feature selection for the autoencoder. To solve the proposed model, we advance an alternative optimization algorithm. Experimental results on three HSI datasets confirm the effectiveness of the proposed model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []