Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks

2017 
In this paper, we focus on tackling the problem of automatic accurate localization of detected objects in high-resolution remote sensing images. The two major problems for object localization in remote sensing images caused by the complex context information such images contain are achieving generalizability of the features used to describe objects and achieving accurate object locations. To address these challenges, we propose a new object localization framework, which can be divided into three processes: region proposal, classification, and accurate object localization process. First, a region proposal method is used to generate candidate regions with the aim of detecting all objects of interest within these images. Then, generic image features from a local image corresponding to each region proposal are extracted by a combination model of 2-D reduction convolutional neural networks (CNNs). Finally, to improve the location accuracy, we propose an unsupervised score-based bounding box regression (USB-BBR) algorithm, combined with a nonmaximum suppression algorithm to optimize the bounding boxes of regions that detected as objects. Experiments show that the dimension-reduction model performs better than the retrained and fine-tuned models and the detection precision of the combined CNN model is much higher than that of any single model. Also our proposed USB-BBR algorithm can more accurately locate objects within an image. Compared with traditional features extraction methods, such as elliptic Fourier transform-based histogram of oriented gradients and local binary pattern histogram Fourier, our proposed localization framework shows robustness when dealing with different complex backgrounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    315
    Citations
    NaN
    KQI
    []