E2F2 and CREB cooperatively regulate transcriptional activity of cell cycle genes

2013 
E2F2 is essential for the maintenance of T lymphocyte quiescence. To identify thefull set ofE2F2 target genes, and to gain further understanding of the role of E2F2 in transcriptional regulation, we have performed ChIP-chip analyses across the genome of lymph node–derived T lymphocytes. Here we show that during quiescence, E2F2 binds the promoters of a large number of genes involved in DNA metabolism and cell cycle regulation, concomitant with their transcriptional silencing. A comparison of ChIP-chip data with expression profiling data on resting E2f2 � /� T lymphocytes identified a subset of 51 E2F2-specific target genes, most of which are upregulatedonE2F2loss.Luciferasereporterassays showed a retinoblastoma-independent role for E2F2 in the negative regulation of these target genes. Importantly, we show that the DNA binding activity of the transcription factor CREB contributes to E2F2mediated repression of Mcm5 and Chk1 promoters. siRNA-mediated CREB knockdown, expression of a dominant negative KCREB mutant or disruption of CREB binding by mutating a CRE motif on Mcm5 promoter, relieved E2F2-mediated transcriptional repression. Taken together, our data uncover a new regulatory mechanism for E2F-mediated transcriptional control, whereby E2F2 and CREB cooperate in the transcriptional repression of a subset of E2F2 target genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    32
    Citations
    NaN
    KQI
    []