Volcanomagnetic signals associated with the quasi-continuous activity of the andesitic Merapi volcano, Indonesia: 1990–1995

1998 
Abstract Merapi volcano in Java island (Indonesia) is an andesitic stratovolcano which presents long periods of effusive activity during which an endogeneous dome is continuously growing. The viscous lava dome gives rise to unstable blocks which collapse or turn into pyroclastic flows. When the volcano does not exhibit any surface activity, the overpressure within the volcano slowly increases. Depending on the quietness duration, the unrest of the volcano can start with an explosive phase during which the former dome is partly destroyed. Magnetic variations of different time constant are observed during the 1990–1995 period which includes one gas plume emission on August 26, 1990 and two eruptions on January 20, 1992 and on November 22, 1994. Compared with other types of active volcanoes, the observed volcanomagnetic variations are very small, at the most a few nanoteslas (nT). To discriminate the variations associated with the global activity from the signals correlated with each unrest phase, one has to dissociate the different time constant variations over the six-year time span. When long-term trends are removed from the magnetic field in each station of the network, an outstanding correlation between all the magnetic differences is emphasised. The midterm variations point out 2 cycles of activity which fit the stress field evolution within the edifice leading to the 1992 and 1994 eruptions. A new cycle has started in May 1995. In every identified cycle, rapid volcanomagnetic signals are well associated with stress field changes (May 1991, September 1991, February 1993, December 1993, …). Some of the volcanomagnetic variations are short-term precursory signals as the three months decrease, up to 1.3 nT, preceding the 1992 eruption. The comparison between magnetic data, seismicity and surface phenomena implies that the midterm volcanomagnetic variations associated with the cycles of Merapi activity are of piezomagnetic origin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    27
    Citations
    NaN
    KQI
    []