Design of Two-Dimensional Photonic Crystal-based Biosensor for Abnormal Tissue Analysis

2021 
The identification and subsequent classification of different brain tissues is critical for detecting abnormalities during robot-assisted minimally invasive surgery that includes connection with the tissues. In this work, an optical sensor was designed to assess the refractive index (RI) of different brain tissues while the robotic surgery is performed. The proposed design is based on a two-dimensional photonic crystal biosensor powered by electromagnetic radiation. It operates within the wavelength range from 1648nm to 1794nm intended to effectively detect the changes in the RI of different tissues. Because the RI of abnormal tissues is significantly different from that of normal tissues, the sensor is capable of distinguishing tumors and cancer-infected brain tissues from normal brain tissues. The sensor exhibits different ranges of frequency, wavelength, and amplitude spectra, which respond to small changes that occur in the RI of the brain tissue. The simulation results showed that the photonic crystal biosensor has a high sensitivity of 4615.38nm/RIU, quality factor of 573, and detection limit of 0.0013 RIU.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []