Electric-field induced second-harmonic generation using high-intensity femtosecond laser pulses over visible optical breakdown threshold

2020 
We investigated the performance of electric-field-induced second-harmonic generation (E-FISHG) by spectroscopic measurement using high-intensity femtosecond laser pulses. The second-harmonic intensity increased quadratically versus the applied electric field, as expected from the theory, up to 15 kV/cm with the laser energy up to 2.5 mJ, which is ∼5 times higher than the observable optical breakdown threshold. In addition, when the laser energy was 2.8 mJ, ∼80 times signal intensity at 0.23 mJ was obtained. These results suggest that the electric-field measurement by E-FISHG with high-intensity second harmonics is expected by using high-intensity laser pulses above the observable optical breakdown threshold. Spectroscopic measurement shows no E-FISHG of white light generated by self-phase modulation in laser-induced filament.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []