Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos

2019 
Abstract Triclosan (TCS, 5‑chloro‑2‑(2,4‑dichlorophenoxy) phenol) is becoming a major surface waters pollutant worldwide at concentrations ranging from ng L −1 to μg L −1 . Up to now, the adverse effects on aquatic organisms have been investigated at concentrations higher than the environmental ones, and the pathways underlying the observed toxicity are still not completely understood. Therefore, the aim of this study was to investigate the toxic effects of TCS at environmental concentrations on zebrafish embryos up to 120 hours post fertilization (hpf). The experimental design was planned considering both the quantity and the exposure time for the effects on the embryos, exposing them to two different concentrations (0.1 μg L −1 , 1 μg L −1 ) of TCS, for 24 h (from 96 to 120 hpf) and for 120 h (from 0 to 120 hpf). A suite of biomarkers was applied to measure the induction of embryos defence system, the possible increase of oxidative stress and the DNA damage. We measured the activity of glutathione‑ S ‑transferase (GST), P‑glycoprotein efflux and ethoxyresorufin‑ o ‑deethylase (EROD), the level of ROS, the oxidative damage through the Protein Carbonyl Content (PCC) and the activity of antioxidant enzymes. The genetic damage was evaluated through DNA Diffusion Assay, Micronucleus test (MN test), and Comet test. The results showed a clear response of embryos defence mechanism, through the induction of P-gp efflux functionality and the activity of detoxifying/antioxidant enzymes, preventing the onset of oxidative damage. Moreover, the significant increase of cell necrosis highlighted a strong cytotoxic potential for TCS. The overall results obtained with environmental concentrations and both exposure time, underline the critical risk associated to the presence of TCS in the aquatic environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    29
    Citations
    NaN
    KQI
    []