Abnormal development of serotonin nerve fibers in the visual cortex in rats with methylazoxymethanol-induced microcephaly

1998 
The postnatal development of serotonin (5HT)-immunoreactive axons was studied in the visual cortex of the cerebrum in both normal and microcephalic rats during early postnatal and young adult stages. Severe microcephaly in rat offspring was induced by prenatal exposure to methylazoxymethanol acetate (MAM), an anti-mitotic agent, on day 15 of gestation. From postnatal day 1 (PND 1) to PND 5, fine and short 5HT fibers were irregularly dispersed throughout the occipital cortex in both the control and MAM-treated rats (MAM-rats). A conspicuous aggregation of dot-like 5HT terminals was found in controls, but not in MAM-rats, in a shallow layer of the dorsomedial region of the occipital cortical plate. On PND 7, such an aggregation of 5HT terminals was found in both groups. The density of the aggregation increased up to PND 9, but then decreased gradually, finally becoming unrecognizable at around PND 15 in both groups. MAM-rats, however, always showed hyperaggregation of 5HT terminals when compared with controls on the same PND. The density of 5HT fibers gradually increased, and finally made up a network-like formation at PND 28 in both groups, its pattern was essentially identical to the abnormal distribution of 5HT fibers during the later stage. As a result, the network-like formation of 5HT fibers in the MAM-rats at PND 28 was markedly twisted and somewhat hyperdense. In Nissl-stained preparations from PND 9 to 15, the 5HT terminal aggregation in the control rats was precisely confined to the newly forming layer IV of the visual cortex. In the MAM-rats, on the other hand, the aggregation of 5HT terminals was not associated with a specific cortical layer because of a disarranged cytoarchitecture of the microcephaly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []