Laser-driven particle acceleration utilizing nm-thin diamond foils: Improved ion acceleration for cancer therapy, improved electron acceleration and potentially ultra-brilliant X-ray beams for medical diagnostics

2009 
Compared to former laser ion acceleration schemes like target normal sheath acceleration (TNSA) [1], the laser acceleration from ultra-thin diamond-like carbon (DLC) foils is more efficient and for the high-power short-pulse laser ATLAS proton energies up to 100 MeV are expected [2]. Also for the generation of very dense relativistic electron bunches the use of ultra-thin diamond foils leads to much better results [3] than for laser bubble acceleration [4]. By reflection of coherent electromagnetic fields from these relativistic electron bunches it seems possible to generate brilliant, intense X-ray beams [5]. In the longer term we plan to use the laser-driven ion beams for cancer therapy and the X-ray beams in medical diagnostics.We describe the present status and the expected beam properties for the upgraded ATLAS laser at MPQ (Garching) and the setup of our medical beam line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []