Active balance of humanoids with foot positioning compensation and non-parametric adaptation

2016 
To maintain human-like active balance for a humanoid robot, this paper proposes a novel adaptive non-parametric foot positioning compensation approach that can modify predefined step position and step duration online with sensor feedback. A constrained inverted pendulum model taking into account of supporting area to CoM acceleration is used to generate offline training samples with constrained nonlinear optimization programming. To speed up real-time computation and make online model adjustable, a non-parametric regression model based on extended Gaussian Process model is applied for online foot positioning compensation. In addition, a real-time and sample-efficient local adaptation algorithm is proposed for the non-parametric model to enable online adaptation of foot positioning compensation on a humanoid system. Simulation and experiments on a full-body humanoid robot validate the effectiveness of the proposed method. A novel adaptive non-parametric foot positioning compensation approach is proposed.A CIPM taking into account of supporting area to CoM acceleration is used.A non-parametric regression model based on extended Gaussian Process is used for online FPC.A real-time & sample-efficient local adaptation method is proposed for the non-parametric model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    6
    Citations
    NaN
    KQI
    []