Bacterial-type plant ferroxidases tune local phosphate sensing in root development

2021 
Fluctuating bioavailability of inorganic phosphate (Pi), often caused by complex Pi-metal interactions, guide root tip growth and root system architecture for maximizing the foraged soil volume. Two interacting genes in Arabidopsis thaliana, PDR2 (P5-type ATPase) and LPR1 (multicopper oxidase), are central to external Pi monitoring by root tips, which is modified by iron (Fe) co-occurrence. Upon Pi deficiency, the PDR2-LPR1 module facilitates cell type-specific Fe accumulation and cell wall modifications in root meristems, inhibiting intercellular communication and thus root growth. LPR1 executes local Pi sensing, whereas PDR2 restricts LPR1 function. We show that native LPR1 displays specific ferroxidase activity and requires a conserved acidic triad motif for high-affinity Fe2+ binding and root growth inhibition under limiting Pi. Our data indicate that substrate availability tunes LPR1 function and implicate PDR2 in maintaining Fe homeostasis. LPR1 represents the prototype of an ancient ferroxidase family, which evolved very early upon bacterial colonization of land. During plant terrestrialization, horizontal gene transfer transmitted LPR1-type ferroxidase from soil bacteria to the common ancestor of Zygnematophyceae algae and embryophytes, a hypothesis supported by homology modeling, phylogenomics, and activity assays of bacterial LPR1-type multicopper oxidases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    0
    Citations
    NaN
    KQI
    []