Pentoxifylline Attenuates Arsenic Trioxide-Induced Cardiac Oxidative Damage in Mice.

2021 
This study was undertaken to evaluate the therapeutic potential effect of pentoxifylline (PTX) against arsenic trioxide (ATO)-induced cardiac oxidative damage in mice. Thirty-six male albino mice were divided into six groups and treated intraperitoneally with normal saline (group 1), ATO (5 mg/kg; group 2), PTX (100 mg/kg; group 3), and different doses of PTX (25, 50, and 100 mg/kg; groups 4, 5, and 6, respectively) with ATO. After four weeks, the blood sample was collected for biochemical experiments. In addition, cardiac tissue was removed for assessment of oxidative stress markers and histopathological changes (such as hemorrhage, necrosis, infiltration of inflammatory cells, and myocardial degeneration). The findings showed that ATO caused a significant raise in serum biochemical markers such as lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and troponin-I (cTnI), glucose, total cholesterol (TC), and triglyceride (TG) levels. In addition to histopathological changes in cardiac tissue, ATO led to the significant increase in cardiac lipid peroxidation (LPO) and nitric oxide (NO); remarkable decrease in the activity of cardiac antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx); and the depletion of the total antioxidant capacity (TAC) and total thiol groups (TTGs). PTX was able to reduce the increased levels of serum cardiac markers (LDH, CPK, cTnI, TC, and TG), cardiac LPO, and improve antioxidant markers (TAC, TTGs, CAT, SOD, and GPx) alongside histopathologic changes. However, no significant changes were observed in elevated serum glucose and cardiac NO levels. In conclusion, the current study showed the potential therapeutic effect of PTX in the prevention of ATO-induced cardiotoxicity via reversing the oxidative stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []