Optical Chirality of Time-Harmonic Wavefields for Classification of Scatterers

2018 
We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    6
    Citations
    NaN
    KQI
    []