Molecular hydrogen: a benchmark system for near threshold resonances in high partial waves

2017 
Benchmark reactions involving molecular hydrogen, such as H2 + D or H2 + Cl, provide the ideal platforms to investigate the effect of near threshold resonances (NTR) on scattering processes. Due to the small reduced mass of such systems, shape resonances in certain partial waves can provide features at scattering energies up to a few kelvin, achievable in current experiments. We explore the effects of NTRs on elastic and inelastic scattering for various partial waves l (in the case of H2 + Cl for s-wave and H2 + D for p-wave scattering) and find that NTRs lead to a different energy scaling of the cross sections as compared to the well known Wigner threshold regime. We give a theoretical analysis based on Jost functions, and we explore the NTR effects for higher partial waves using a simple model that incorporates the key ingredients of coupled-channel scattering problems. The effect of long-range interactions is also discussed, with special attention paid to the appearance of an effective Wigner regime for elastic scattering in certain partial waves.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    2
    Citations
    NaN
    KQI
    []