BMP signaling regulates the skeletal and connective tissue differentiation during caudal fin regeneration in sailfin molly (Poecilia latipinna)

2017 
: Caudal fin regeneration in sailfin molly, Poecilia latipinna (Lesueur 1821) involves an initial wound healing stage, followed by blastema that is formed of fast proliferating cells. In order to replicate the lost fin, correct differentiation of the blastemal cells into various tissues is the prime essence. Among the molecular signals governing proper differentiation of blastemal cells, members of the bone morphogenetic protein (BMP) family are crucial. Herein, we investigated the specific effects of inhibition of BMP signaling using LDN193189 on skeletal and connective tissue formation in the regenerating tail fin of P. latipinna during early differentiation phase. It was observed that BMP inhibition leads to reduction in the length of regeneration, which can be correlated with compromised proliferation of blastemal cells. Decreased expression of cell proliferation marker like pcna together with reduced BrdU positive cells consolidate the above observation. Further, histological analysis revealed stunted progression of skeletal tissues and this correlated with the reduced expression of sox9, runx2 and dlx5, Osc and Osn genes in response to BMP inhibition. Also, defective bone patterning was observed due to BMP inhibition, which was associated with diminished levels of shh, ptc-1, gli2 and other BMP ligands. Moreover, histochemical analysis revealed that collagen, one of the most prominent components of connective tissue, was formed below par in treated fin tissues which was subsequently confirmed by biochemical and transcript level analyses. Overall our results highlight the importance of the BMP pathway in proper differentiation of skeletal and connective tissues during the differentiation stage of regenerating caudal fin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []