A stochastic individual based model for the growth of a stand of Japanese knotweed including mowing as a management technique

2019 
Invasive alien species are a growing threat for environment and health. They also have a major economic impact, as they can damage many infrastructures. The Japanese knotweed (Fallopia japonica), present in North America, Northern and Central Europe as well as in Australia and New Zealand, is listed by the World Conservation Union as one of the world's worst invasive species. So far, most models have dealt with how the invasion spreads without management. This paper aims at providing a model able to study and predict the dynamics of a stand of Japanese knotweed taking into account mowing as a management technique. The model we propose is stochastic and individual-based, which allows us taking into account the behaviour of individuals depending on their size and location, as well as individual stochasticity. We set plant dynamics parameters thanks to a calibration with field data, and study the influence of the initial population size, the mean number of mowing events a year and the management project duration on mean area and mean number of crowns of stands. In particular, our results provide the sets of parameters for which it is possible to obtain the stand eradication, and the minimal duration of the management project necessary to achieve this latter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    1
    Citations
    NaN
    KQI
    []