Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion

2017 
Abstract The quality of agricultural soil is vital to human health, however soil contamination is a severe problem in China. Polycyclic aromatic hydrocarbons (PAHs) have been found to be among the major soil contaminants in China. PAH derivatives could be more toxic but their measurements in soils are extremely limited. This study reports levels, spatial distributions and compositions of 11 nitrated (nPAHs) and 4 oxygenated PAHs (oPAHs) in agricultural soils covering 26 provinces in eastern China to fill the data gap. The excess lifetime cancer risk (ELCR) from the exposure to them in addition to 21 parent PAHs (pPAHs) via soil ingestion has been estimated. The mean concentration of ∑ nPAHs and ∑ oPAHs in agricultural soils is 50 ± 45 μg/kg and 9 ± 8 μg/kg respectively. Both ∑ nPAHs and ∑ oPAHs follow a similar spatial distribution pattern with elevated concentrations found in Liaoning, Shanxi, Henan and Guizhou. However if taking account of pPAHs, the high ELCR by soil ingestion is estimated for Shanxi, Zhejiang, Liaoning, Jiangsu and Hubei. The maximum ELCR is estimated at ca.10 − 5 by both deterministic and probabilistic studies with moderate toxic equivalent factors (TEFs). If maximum TEFs available are applied, there is a 0.2% probability that the ELCR will exceed 10 − 4 in the areas covered. There is a great chance to underestimate the ELCR via soil ingestion for some regions if only the 16 priority PAHs in agricultural soils are considered. The early life exposure and burden are considered extremely important to ELCR. Emission sources are qualitatively predicted and for areas with higher ELCR such as Shanxi and Liaoning, new loadings of PAHs and derivatives are identified. This is the first large scale study on nPAHs and oPAHs contamination levels in agricultural soils in China. The risk assessment based on this underpins the policy making and is valuable for both scientists and policy makers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    37
    Citations
    NaN
    KQI
    []