Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modelling and time series analysis in three temperate lowland catchments

2021 
Abstract. Lowland rivers and shallow aquifers are closely coupled and their interactions are crucial for maintaining healthy stream ecological functions. In order to explore river–aquifer interactions and lowland hydrological system in three Belgian catchments, we apply a combined approach of baseflow separation, impulse response modelling and time series analysis over a 30–year study period at catchment scale. Baseflow from hydrograph separation shows that the three catchments are groundwater-dominated. The recursive digital filter methods generate a smoother baseflow time series than the graphical methods, and yield more reliable results than the graphical ones. Impulse response modelling is applied with a two–step procedure. The first step where groundwater level response is modelled shows that groundwater level in shallow aquifers reacts fast to the system input, with most of the wells reaching their peak response during the first day. There is an overall trend of faster response time and higher response magnitude in the wet (October–March) than the dry (April–September) periods. The second step of baseflow response modelling shows that the system response is also fast and that simulated baseflow can capture some variations but not the peaks of the separated baseflow time series. The time series analysis indicates that components such as interflow and overland flow, contribute significantly to stream flow. They are somehow included as part of the separated baseflow, which is likely to be overestimated from hydrograph separation. The impulse response modelling approach from the groundwater flow perspective can be an optional method to estimate the baseflow, since it considers some level of the physical connection between river and aquifer in the subsurface. Further research is however recommended to improve the simulation, such as giving more weight to wells close to the river and adding more drainage dynamics to the model input.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []