Reduction and Complexation of Copper in a Novel Bioreduction System Developed to Recover Base Metals from Mine Process Waters

2013 
An integrated bio-processing scheme was devised and tested in the laboratory for recovering copper, or other base metals, from pregnant leach solutions (PLS) using a two-step process involving both iron-reduction, and sulfate-reduction for H2S generation and sulfide precipitation, as a potential alternative to conventional SX-EW. Reduction of ferric iron in the PLS was achieved using iron-reducing Acidithiobacillus spp. and Sulfobacillus thermosulfidooxidans in column reactors containing elemental sulfur as electron donor. Analysis of the column reactor effluents showed not only that most of the ferric iron was reduced to ferrous, but also that all of the copper (II) had been reduced to copper (I), i.e. cuprous copper. This copper (I) appeared to be complexed as it was not oxidized when exposed to ferric iron nor precipitated as a copper-sulfide when exposed to either sodium sulfide or H2S. The data suggested that copper (II) was reduced and the resulting copper (I) complexed, with both reactions probably mediated by sulfur oxy-anions produced indirectly by the bacteria, in the anoxic sulfur column bioreactors. It was also noted that copper (I) produced chemically by reduction of copper (II) by hydroxylamine was more toxic to axenic cultures of Acidithiobacillus spp. and Sb. thermosulfidooxidans than was the copper (I) in the column effluent liquors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    2
    Citations
    NaN
    KQI
    []