Mobility Modes for Pulse-Shaped OTFS with Linear Equalizer

2020 
Orthogonal time frequency and space (OTFS) modulation is a pulse-shaped Gabor signaling scheme with additional time-frequency (TF) spreading using the symplectic finite Fourier transform (SFFT). With a sufficient amount of accurate channel information and sophisticated equalizers, it promises performance gains in terms of robustness for high mobility users. To fully exploit diversity in OTFS, the 2D-deconvolution implemented by a linear equalizer should approximately invert the doubly dispersive channel operation, which however is a twisted convolution. In theory, this is achieved in a first step by matching the TF grid and the Gabor synthesis and analysis pulses to the delay and Doppler spread of the channel. However, in practice, one always has to balance between supporting high granularity in delay-Doppler (DD) spread, and multi-user and network aspects. In this paper, we propose mobility modes with distinct grid and pulse matching for different doubly dispersive channels. To account for remaining self-interference, we tune the minimum mean square error (MMSE) linear equalizer without the need of estimating channel cross-talk coefficients. We evaluate our approach with the QuaDRiGa channel simulator and with OTFS transceiver architecture based on a polyphase implementation for orthogonalized Gaussian pulses. In addition, we compare OTFS to a IEEE 802.11p compliant design of cyclic prefix (CP) based orthogonal frequency-division multiplexing (OFDM). Our results indicate that with an appropriate mobility mode, the potential OTFS gains can be indeed achieved with linear equalizers to significantly outperform OFDM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []