Analysis of the novel NCWELL database highlights two decades of co-occurrence of toxic metals in North Carolina private well water: Public health and environmental justice implications

2021 
Abstract Private well users are particularly vulnerable to metal exposure as they are not protected by the Safe Drinking Water Act. In North Carolina (NC), approximately 2.4 million individuals rely on private well water. In the present study, we constructed the NCWELL database: a comprehensive database of 117,960 geocoded well water tests over twenty-years in NC inclusive of 28 metals/metalloids. The NCWELL database was analyzed to identify areas of concern for single and co-occurring toxic metal contamination of private wells in NC. County-level population-at-risk rankings were calculated by combining toxic metal levels and the proportion of residents relying on well water. Additionally, k-means analysis was used to identify counties with critical co-occurrence of toxic metals. These results highlight that inorganic arsenic (iAs) and lead (Pb) were detected above the EPA standards of 10 and 15 ppb in over 2500 and over 3000 tests, respectively. Shockingly, iAs was observed at levels up to 806 ppb and Pb at levels up to 105,440 ppb. Manganese (Mn) was detected above the EPA lifetime Health Advisory Limit in 4.9% and above the secondary Maximum Contaminant Level in 24.3% of all well water tests in NC, with a maximum concentration of 46,300 ppb reported. Mixtures-based analysis identified four distinct clusters of counties, one demonstrating high iAs and Mn and another with high Pb. Over the twenty-year period, metal levels remained high, indicative of sustained contamination in areas of concern. This study provides a novel database for researchers and concerned citizens in NC, demonstrates a methodology for identifying priority geographic regions for single and multiple contaminants, and has environmental justice implications in NC where metal exposure via private well water remains a serious public health concern.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []