Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression

2021 
Optical kidney biopsy, serological examination, and clinical symptoms are the main methods for membranous nephropathy (MN) diagnosis. However, false positives and undetectable biochemical components in the results of optical inspections lead to unsatisfactory diagnostic sensitivity and pose obstacles to pathogenic mechanism analysis. In order to reveal detailed component information of immune complexes of MN, microscopic hyperspectral imaging technology is employed to establish a hyperspectral database of 68 patients with two types of MN. Based on the characteristic of the medical HSI, a novel framework of tensor patch-based discriminative linear regression (TDLR) is proposed for MN classification. Experimental results show that the classification accuracy of the proposed model for MN identification is 98.77%. The combination of tensor-based classifiers and hyperspectral data analysis provides new ideas for the research of kidney pathology, which has potential clinical value for the automatic diagnosis of MN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []