An enhanced centrifugation-assisted lateral flow immunoassay for the point-of-care detection of protein biomarkers.

2020 
Protein biomarkers are widely used for disease diagnosis, but the current detection methods utilized in centralized laboratories are mainly based on enzyme-linked immunosorbent assay (ELISA)-derived sandwich-type immunoassays such as chemiluminescent or electrochemiluminescent immunoassays, which suffer from long detection times and cumbersome instruments. For the point-of-care (POC) detection of protein biomarkers, various test strips for lateral flow immunoassay (LFIA) have been manufactured, but their detection sensitivities and capabilities for raw samples are limited. In this study, an enhanced centrifugation-assisted lateral flow immunoassay (ECLFIA) was established to rapidly detect protein biomarkers in whole blood with a higher sensitivity than LFIA. By inserting a nitrocellulose membrane into a centrifugal disc, fully automated operations, including sample preparation, active lateral flow actuation, washing, and signal amplification, which could hardly be performed in conventional LFIA, were enabled on the centrifugal platform for ECLFIA. The entire process for detecting human prostate specific antigen (PSA) in a drop of blood (20 μL) could be completed in 15 min. The limit of detection for our ECLFIA system was 0.028 ng mL−1, showing a 21.4-fold improvement compared to that of LFIA. Moreover, this system was utilized to detect PSA in 34 clinical samples. The results were compared to those measured using a commercial instrument used in the hospital, and a good correlation coefficient of 0.986 was obtained, demonstrating the practicality of this ECLFIA system. In summary, the ECLFIA system established in this study can be an efficient tool for the POC detection of protein biomarkers with comprehensive advantages in sensitivity, simplicity and speed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    12
    Citations
    NaN
    KQI
    []