Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries

2011 
A facile process to synthesize graphene-like MoS2/amorphous carbon (a-C) composites was developed. MoS2/C composites were firstly prepared by hydrothermal method employing sodium molybdate, sulfocarbamide and glucose as starting materials. The graphene-like MoS2/a-C composites were obtained after annealing at 800 °C in H2/N2. The samples were characterized by XRD, SEM, EDS and HRTEM. It was confirmed that in the composites MoS2 has a structure of single-layer, which is named graphene-like nanostructure. The graphene-like MoS2 nanosheets were uniformly dispersed in amorphous carbon. The interlaminar distance of the adjacent graphene-like MoS2 nanosheets in the composites measured was ∼1.0 nm. The mechanism of the formation of the graphene-like MoS2/a-C composites was investigated. The graphene-like MoS2/a-C composites exhibited high capacity and excellent cyclic stability used as anode materials for Li-ion batteries. The composite prepared by adding 1.0 g of glucose in hydrothermal solution exhibited the highest reversible capacity (962 mAh g−1) and excellent cyclic stability. After 100 cycles, it still retained 912 mAh g−1. The significant improvements in the electrochemical properties of the graphene-like MoS2/a-C composites could be attributed to the graphene-like structure of the MoS2 nanosheets and the synergistic effects of graphene-like MoS2 and amorphous carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    444
    Citations
    NaN
    KQI
    []