Intrinsically Motivated Multimodal Structure Learning

2016 
We present a long-term intrinsically motivated structure learning method for modeling transition dynamics during controlled interactions between a robot and semi-permanent structures in the world. In particular, we discuss how partially-observable state is represented using distributions over a Markovian state and build models of objects that predict how state distributions change in response to interactions with such objects. These structures serve as the basis for a number of possible future tasks defined as Markov Decision Processes (MDPs). The approach is an example of a structure learning technique applied to a multimodal affordance representation that yields a population of forward models for use in planning. We evaluate the approach using experiments on a bimanual mobile manipulator (uBot-6) that show the performance of model acquisition as the number of transition actions increases.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []