Transcriptional response of zebrafish larvae exposed to lindane reveals two detoxification genes of ABC transporter family (abcg5 and abcg8).

2020 
Abstract Lindane is a highly toxic organochlorine pesticide and widely exist in water with harmful effects on fish. Although some genes have been found to be regulated by lindane in fish, the transcriptional response of fish exposed to lindane is still unknown. In this research, the transcriptional changes of zebrafish larvae exposed to 0.2 mg/L lindane from 96 to 120 hpf were studied by RNA sequencing. Our transcriptome identified 554 up-regulated and 118 down-regulated genes and the differentially expressed genes were closely related to the neuromast development, RNA silencing genes, ion transport, and response to estrogen. In addition, we characterized two sensitive and novel lindane-induced ABCG (ATP binding cassette G subfamily) transporter genes- abcg5 and abcg8. Abcg5 and abcg8 genes are located on chromosome 13 of zebrafish and contain 1956/2024 bp open reading frame. The polypeptide deduced by CDS amplification contains 652/676 amino acids and has most of the functional domains and key residues defined in human and mouse ABCG5/Abcg5 or ABCG8/Abcg8. Only when the co-expression of Abcg5 and Abcg8 enable them to transport to the cell membrane surface in 293T cells. In addition, lindane can induce the transcriptional expression of abcg5 and abcg8 genes, and overexpression of Abcg5 and Abcg8 significantly reduced the toxicity of lindane to zebrafish larvae, which means that zebrafish Abcg5 and Abcg8 are potential efflux transporters of lindane. Therefore, these findings provide useful insights for further understanding the zebrafish larvae's transcriptional response and detoxification ability after acute exposure to lindane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    4
    Citations
    NaN
    KQI
    []