The Global Electric Circuit and Global Seismicity

2021 
Basing on the catalogue of earthquakes with a magnitude of M ≥ 4.5 for the period 1973–2017, a UT variation with an amplitude of ~10% in the number of earthquakes is revealed and compared with a UT variation in the ionospheric potential (IP) with an amplitude of ~18%. We demonstrate that the amplitude of the UT variation in the number of deep-focus earthquakes is greater compared with that of crustal earthquakes, reaching 19%. The UT of the primary maxima of both the IP (according to modern calculations) and of earthquake incidence coincides (near 17:00 UT) and is, by 2 h, ahead of the classical Carnegie curve representing the UT variation in the atmospheric electric field on the ground surface. The linear regression equation between these UT variations in the number of deep-focus earthquakes and the ionospheric potential is obtained, with a correlation coefficient of R = 0.97. The results support the idea that the processes of earthquake preparation are coupled to the functional processes of the global electric circuit and the generation of atmospheric electric fields. In particular, the observed increase in thunderstorm activity over earthquake preparation areas, provided by air ionization due to radon emanation, yields a clue as to why the global thunderstorm distribution is primarily continental. Another important conclusion is that, in observing the longitudinal distributions of earthquakes against the IP distribution, we automatically observe that all such events occur in local nighttime hours. Considering that the majority of earthquake precursors have their maximums at local night and demonstrating the positive deviation from the undisturbed value, we obtain a clue as to its positive correlation with variations in the ionospheric potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []