Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules

2017 
Abstract Methyl 5-methoxy-1H-indole-2-carboxylate (MMIC) was prepared via esterification of commercially available 5-methoxyindole-2-carboxylic acid. The title molecule MMIC was characterised using FT-IR and FT-Raman in the ranges of 4000–500 and 4000–50 cm −1 , respectively. The fundamental modes of the vibrations were assigned and the UV–visible spectrum of the MMIC molecule was recorded in the range of 200–400 nm to explore its electronic nature. The HOMO-LUMO energy distribution was calculated and the bonding and anti-bonding structures of the title molecule were studied and analysed using the natural bond orbital (NBO) approach. The reactivity of the MMIC molecule was also investigated and both the positive and negative centres of the molecule were identified using chemical descriptors and molecular electrostatic potential (MEP) analysis. The chemical shifts of the 1 H and 13 C NMR spectra were noted and the magnetic field environment of the MMIC molecule are discussed. The non-linear optical (NLO) properties of the title molecule were studied based on its calculated values of polarisability and hyperpolarisability. All computations were obtained by DFT methods using the 6-311++G (d,p) basis set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    15
    Citations
    NaN
    KQI
    []