Superconducting Phase Induced by a Local Structure Transition in Amorphous Sb_{2}Se_{3} under High Pressure.

2021 
Superconductivity and Anderson localization represent two extreme cases of electronic behavior in solids. Surprisingly, these two competing scenarios can occur in the same quantum system, e.g., in an amorphous superconductor. Although the disorder-driven quantum phase transition has attracted much attention, its structural origins remain elusive. Here, we discovered an unambiguous correlation between superconductivity and density in amorphous ${\mathrm{Sb}}_{2}{\mathrm{Se}}_{3}$ at high pressure. Superconductivity first emerges in the high-density amorphous (HDA) phase at about 24 GPa, where the density of glass unexpectedly exceeds its crystalline counterpart, and then shows an enhanced critical temperature when pressure induces crystallization at 51 GPa. Ab initio simulations reveal that the bcc-like local geometry motifs form in the HDA phase, arising from distinct ``metavalent bonds.'' Our results demonstrate that HDA phase is critical for the incipient superconductive behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []