Measurement report: Source apportionment of volatile organic compounds at the remote high-altitude Maïdo observatory

2021 
Abstract. We present a source apportionment study of a near-continuous 2-year dataset of volatile organic compounds (VOCs), recorded between October 2017 and November 2019 with a quadrupole-based high-sensitivity proton-transfer-reaction mass-spectrometry (hs-PTR-MS) instrument deployed at the Maido observatory (21.1° S, 55.4° E, 2,160 m altitude). The observatory is located on La Reunion island in the south-west Indian Ocean. We discuss seasonal and diel profiles of six key VOC species unequivocally linked to specific sources – acetonitrile (CH3CN), isoprene (C5H8), isoprene oxidation products (Iox), benzene (C6H6), C8-aromatics (C8H10), and dimethyl sulfide (DMS). The data are analyzed using the positive matrix factorization (PMF) method and back-trajectory calculations based on the Lagrangian mesoscale transport model FLEXPART-AROME to identify the impact of different sources on air masses recorded at the observatory. As opposed to the biomass burning tracer CH3CN, which does not exhibit a consistent diel variability, we identify pronounced diel profiles with a daytime maximum for the biogenic (C5H8 and Iox) and anthropogenic (C6H6, C8H10) tracers. The marine tracer DMS generally displays a daytime maximum except for the austral winter when the difference between daytime and nighttime mixing ratios vanishes. Four factors were identified by the PMF: background/biomass burning, anthropogenic, primary biogenic and secondary biogenic. Despite human activity being concentrated in few coastal areas, the PMF results indicate that the anthropogenic source factor is the dominant contributor to the VOC load (38 %), followed by the background/biomass burning source factor originating in the free troposphere (33 %), and by the primary (15 %) and secondary biogenic sources (14 %). FLEXPART-AROME simulations showed that the observatory was most sensitive to anthropogenic emissions west of Maido while the strongest biogenic contributions coincided with airmasses passing over the north-eastern part of La Reunion. At night, the observatory is often located in the free troposphere while during the day, the measurements are influenced by mesoscale sources. Interquartile ranges of nighttime 30-minute average concentrations of methanol (CH3OH), CH3CN, acetaldehyde (CH3CHO), formic acid (HCOOH), acetone (CH3COCH3), acetic acid (CH3COOH) and methyl ethyl ketone (MEK), representative for the atmospheric composition of the free troposphere, were found to be 525–887 pptv, 79–110 pptv, 61–101 pptv, 172–335 pptv, 259–379 pptv, 64–164 and 11–21 pptv, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    1
    Citations
    NaN
    KQI
    []