Management of pennycress as a winter annual cash cover crop. A review

2019 
Agriculture in the Upper Midwest of the USA is characterized by a short growing season and unsustainable farming practices including low-diversity cropping systems and high fertilizer inputs. One method to reduce the magnitude of these problems is by integrating a winter annual into the summer-annual-dominant cropping system. For this reason, pennycress (Thlaspi arvense) has garnered interest in the agricultural community due to its winter annual growth habit and potential for industrial oil production, making it an ecologically and economically desirable crop. Despite decades of research focusing on pennycress as an agricultural weed, little is known about its best management practices as an intentionally cultivated crop. The majority of agronomic research has occurred within the past 10 years, and there are major gaps in knowledge that need to be addressed prior to the widespread integration of pennycress on the landscape. Here we review relevant agronomic research on pennycress as a winter annual crop in the areas of sowing requirements, harvest, seed oil content, seed oil quality, cropping strategies, ecosystem services, and germplasm development. The major points are as follows: (1) there is little consensus regarding basic agronomic practices (i.e., seeding rate, row spacing, nutrient requirements, and harvest strategy); (2) pennycress can be integrated into a corn (Zea mays)–soybean (Glycine max) rotation, but further research on system management is required to maximize crop productivity and oilseed yields; (3) pennycress provides essential ecosystem services to the landscape in early spring when vegetation is scarce; (4) breeding efforts are required to remove detrimental weedy characteristics, such as silicle shatter and high sinigrin content, from the germplasm. We conclude that pennycress shows great promise as an emergent crop; however, current adoption is limited by a lack of conclusive knowledge regarding management practices and future research is required over a multitude of topics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    14
    Citations
    NaN
    KQI
    []