Mitochondrial dysfunction triggers secretion of the immunosuppressive factor α-fetoprotein

2021 
Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identify a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that results in atrophy of the spleen and thymus and causes a peripheral white blood cell deficiency. We demonstrate that the leukopenia is caused by α-fetoprotein, which requires copper and the cell surface receptor CCR5 to promote white blood cell death. We further show that α-fetoprotein expression is upregulated in several cell types upon inhibition of oxidative phosphorylation, including a muscle cell model of Barth syndrome. Collectively, our data argue that α-fetoprotein secreted by bioenergetically stressed tissue suppresses the immune system, an effect which may explain the recurrent infections that are observed in a subset of mitochondrial diseases or in other disorders with mitochondrial involvement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []