The SAMI Galaxy Survey: a new method to estimate molecular gas surface densities from star formation rates

2017 
Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H_2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H_2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σ_(gas)) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σ_(gas) by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (Σ_(SFR)) with Σ_(gas) and the turbulent Mach number (M). Based on the measured range of Σ_(SFR) = 0.005-1.5M⊙ yr^(−1) kpc^(−2) and M=18–130, we predict Σ_(gas) = 7–200 M⊙ pc^(−2) in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σ_(gas) obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as ‘star-forming’ (219) or ‘composite/AGN/shock’ (41), and find that in ‘composite/AGN/shock’ galaxies the average Σ_(SFR), M and Σ_(gas) are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σ_(gas) with those obtained by inverting the Kennicutt–Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σ_(gas), with an average deviation of 32 per cent from the actual Σ_(gas).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    130
    References
    26
    Citations
    NaN
    KQI
    []