Characterization of Highly Dispersed Rod- and Particle-Shaped CuFe19Ox Catalysts and Their Shape Effects on WGS

2018 
Highly dispersed CuFe19Ox catalysts with different shapes were prepared and further characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), and in-situ XRD. XRD and TEM results showed that the synthesized CuFe19Ox nanoparticles consisted of CuO and Fe2O3, while CuFe19Ox nanorods consisted of CuFe2O4 and Fe2O3. The reduction properties of CuFe19Ox samples were finely studied by H2-TPR, and the phase composition was identified by in-situ XPS, HR-TEM, and surface TPR (s-TPR). In-situ X-ray photoelectroscopy (XPS) indicated that the metallic Cu and Fe3O4 were the main species after reduction. Moreover, s-TPR studies showed that the reduction performance of copper was significantly affected by the shapes of the Fe3O4 supports. Low-temperature water gas shift (LT-WGS) was chosen to characterize the Cu species on the surface. It was found that reduced CuFe19Ox nanorods had no activity. On the contrary, reduced CuFe19Ox particles showed higher initial WGS activity, where the active Cu0 should originate from the reduction of Cu2O at lower temperatures, as confirmed by the s-TPR profiles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []