Layer-Dependent Electron Transfer and Recombination Processes in MoS2/WSe2 Multilayer Heterostructures.

2020 
Understanding and controlling the charge transfer processes of two-dimensional (2D) materials are fundamental for the optimized device performance based on 2D semiconductors and heterostructures. The charge transfer rate is very robust in transition metal disulfide (TMD) heterostructures with type II band alignments, which can be manipulated by intercalating a dielectric layer like hBN to isolate the donor and acceptor monolayers. This study shows that there is an alternative way to change the electron transfer and recombination rates in the case of nLMoS2/mLWSe2 multilayer heterostructures, where the donor-acceptor distance is maintained, but the rate of electron transfer is strongly layer dependent and shows asymmetry for the layer number of donor and acceptor monolayers. Especially, the 1LMoS2/2LWSe2 heterostructure slows electron transfer and charge recombination rates ∼2.3 and ∼12 times that of the 1LMoS2/1LWSe2 heterostructure, respectively, which have been competitive with that in the 1LMoS2/hBN/1LWSe2 heterostructure. From an application perspective, the noninterfacial electron transfer in which photogenerated electrons should across more than one atomically thin layer is not favorable due to the built-in electric field established by the initial interfacial electron transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    8
    Citations
    NaN
    KQI
    []