Toward the evaluation of intersystem crossing rates with variational relativistic methods

2019 
The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additional calculations on a more strongly spin-orbit-coupled [UO2Cl4]2− complex further illustrate the strengths of this method. This procedure will be valuable in the estimation of intersystem crossing rates within strongly spin-coupled species.The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    4
    Citations
    NaN
    KQI
    []