Analysis of plaque microbiota and salivary proteins adhering to dental materials

2020 
Abstract Objectives Plaque causes oral diseases and aspiration-pneumonia in the elderly. It is not known whether pellicle-like attached salivary proteins and microbiota on dental materials are identical to those on teeth. The purpose of this study was to determine the properties of salivary proteins and microbiota that attach to dental materials. Methods Eight subjects wore removable oral splints with pieces of pure-titanium, cobalt-chromium alloy, silver-palladium-copper-gold-alloy, denture-base-resin, and hydroxyapatite for 24 hours. The bacteria that adhered to each material were analyzed using 16S rRNA sequencing simultaneously. Each material sample was then immersed in pooled saliva, and the attached proteins were collected. Salivary proteins were analyzed using MALDI-TOF/MS, and high molecular weight proteins were identified using peptide mass fingerprinting. Results Among the dental materials, the α- and β-diversity of adherent flora were similar. The bacterial species that adhered easily to materials were Streptococcus sp. oral taxon 058, Neisseria mucosa, Gemella haemolysans, and Rothia dentocariosa. Regardless of material, the peaks or spots of attached salivary proteins had similar patterns, containing functioning proteins such as anchoring receptors for early colonizers. Conclusions There were no significant differences in microbiota and protein adherence in hydroxyapatite compared to the dental materials. Therefore, similar microbiota was determined to have formed on the similar pellicle-like proteins. In our study, the characteristics of plaque adhesion on both hydroxyapatite and dental materials were clarified. Based on this study, the creation of new methods of inhibiting plaque adhesion to prevent aspiration-pneumonia and oral infections can be undertaken.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []