Euclid Preparation IV. Impact of undetected galaxies on weak lensing shear measurements

2019 
In modern weak lensing surveys, shape measurement algorithms are calibrated using simulations in order to correct for any residual systematic bias in the shear. These simulations must fully capture the complexity of the observations to avoid introducing any additional bias. In this paper we study the importance of faint galaxies below the observational detection limit of a survey. We simulate simplified Euclid VIS images with and without including this faint population, and measure the shift in the multiplicative shear bias between the two sets of simulations. We measure the shear with three different algorithms: a moment-based approach, model fitting, and machine learning. We find that for all methods, a spatially uniform random distribution of faint galaxies introduces a shear multiplicative bias of the order of a few times $10^{-3}$. This value increases to the order of $10^{-2}$ when including the clustering of the faint galaxies, as measured in the Hubble Space Telescope Ultra Deep Field. The magnification of the faint background galaxies due to the brighter galaxies along the line of sight is found to have a negligible impact on the multiplicative bias. We conclude that the undetected galaxies must be included in the calibration simulations with proper clustering properties down to magnitude 28 in order to reach a residual uncertainty on the multiplicative shear bias calibration of a few times $10^{-4}$, in line with the $2\times10^{-3}$ total accuracy budget required by the scientific objectives of the Euclid survey. We propose two complementary methods for including faint galaxy clustering in the calibration simulations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []