Synthesis and the field emission performances of SnO2 micrograsses

2017 
SnO2 micromaterials were synthesized via hydrothermal method at a temperature of 200 °C for 24 h without employment of catalysts or surfactants. With the dosage of the precursor (SnCl4) increasing, variable microstructures of SnO2, ophiopogon japonicas-like micrograsses, microcones, microflowers and microcorals, were obtained. The as-prepared SnO2 samples were characterized by X-ray diffraction (XRD), scanning electron microscope and energy dispersive spectrometer respectively. XRD results indicated the as-grown SnO2 samples have a tetragonal rutile structure. Among those different morphologies, micrograsses SnO2 exhibited the best field emission performance with a low turn-on field of 1.05 V/µm and a high field enhancement factor of 3880. The results are quite comparable to reported data and strongly imply the micrograsses SnO2 is a potential material for fabricating efficient emitters of display devices and vacuum electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []