Possibilities of an experimental damaging effect on the retinal pigment epithelium

2021 
PURPOSE To simulate the damaging effect on retinal pigment epithelium (RPE) in an experiment studying the effect of human neuronal precursors (NPs). MATERIAL AND METHODS The study was carried out on 31 rabbits (31 eyes) of the Chinchilla breed, which were divided into 3 groups: the 1st group received a subretinal injection of balanced saline solution (BSS); the 2nd group - subretinal injection of BSS with vitrectomy, displacement of the injection bladder away from the injection site using a perfluororganic compound (PFOC) and laser coagulation; the 3rd group - subretinal injection of a culture of NPs using the same method as in the group 2. All rabbits were observed for 21 days using ophthalmoscopy, optical coherence tomography (OCT) and autofluorescence (AF). RESULTS In the 1st group, 4 out of 5 rabbits were observed to have total retinal detachment and vitreoretinal proliferative processes in the early postoperative period after subretinal injection of the BSS. In the 2nd group, OCT and AF revealed atrophy of the outer and inner layers of the retina as well as disorganization of the photoreceptors-RPE-Bruch's membrane complex in the area of injection on the 21 day after the operation. In the 3rd group, the OCT data obtained during the 21 days of observation showed that a hyperreflective zone at the level of the RPE-Bruch's membrane complex corresponding to the NPs injection site was preserved, while there was a partial loss of the outer retinal layers - but of a smaller volume compared to the BSS injection. The suggested method of subretinal injection led to a reduced number of complications: in the 1st group, postoperative complications amounted to 80%, while in the 2nd and 3rd groups - 45%. CONCLUSION The study proposes a new method for retinal injection of BSS, which can help reduce RPE degeneration patterns and possible postoperative complications, thus increasing research efficiency. Subretinal injection of a culture of neuronal precursors derived from human induced pluripotent stem cells (iPSCs) in an experiment can serve as a universal model for studying the survival and integration of stem cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []