Scalar and tensor gravitational waves

2021 
In dark-energy models where a scalar field is nonminimally coupled to the spacetime geometry, gravitational waves are expected to be supplemented with a scalar mode. Such scalar waves may interact with the standard tensor waves, thereby affecting their observed amplitude and polarization. Understanding the role of scalar waves is thus essential in order to design reliable gravitational-wave probes of dark energy and gravity beyond general relativity. In this article, we thoroughly investigate the propagation of scalar and tensor waves in the subset of Horndeski theories in which tensor waves propagate at the speed of light. We work at linear order in scalar and metric perturbations, in the eikonal regime, and for arbitrary scalar and spacetime backgrounds. We diagonalize the system of equations of motion and identify the physical tensor mode, which differs from the metric perturbation. We find that interactions between scalar and tensor waves depend on the scalar propagation speed; if the scalar waves are luminal or quasiluminal, then interactions are negligible. The subluminal case is more subtle and will be addressed with a different formalism in a future work.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []