Capillary electrophoresis in N,N-dimethylformamide

2005 
N,N-Dimethylformamide (DMF) is a dipolar protophilic solvent with physicochemical properties that makes it suitable as solvent for capillary electrophoresis (CE). It is prerequisite for the proper application of CE to adjust and to change the pH of the background electrolyte (BGE) in a defined manner. This was done in the present work using benzoic acid-benzoate by selecting different concentration ratios of acid and salt, and calculating the theoretical pH from the activity-corrected Henderson-Hasselbalch equation. The mobilities of the analytes (chloro- and nitro-substituted phenolates) were found to follow reasonably well the typical sigmoid mobility versus pH curve as predicted by theory. The actual mobilities and pK a values (at 25°C) of the analytes were derived from these curves. pK a values were in the range of 11.1-11.7, being thus 3-4.4 units higher than in water. This pK a shift is caused by the destabilization of the analyte anion and the better stability (solubility) of the molecular analyte acid in DMF, which overcome the higher basicity of DMF compared to water. Absolute mobilities were calculated from the actual mobilities; they were between 32 × 10 - 9 and 42 × 10 - 9 m 2 / V x s. Slight deviations of the measured mobilities from the theoretical mobility versus pH curve were discussed on the bases of ion pairing and heteroconjugation and homoconjugation of either buffer components or buffer components and analytes. Heteroconjugation was used as a mechanism for the electrically driven separation of neutral analyte molecules in a BGE where salicylate acted as complex forming ion. Rough estimation of the complexation constants for the phenolic analytes gave values in the range of 100-200 L/mol. Addition of water to the solvent decreased the effect of heteroconjugation, but it was still present up to the surprisingly high concentration of 20% water. Electrophoretically relevant parameters like ionic mobilities and pK a values, and conjugation and ion pairing are dependent on the water content of the solvent. The water uptake of DMF was measured when exposed to humidity of ambient air. The resulted behavior of the water uptake was found rather similar to that for acetonitrile and methanol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    18
    Citations
    NaN
    KQI
    []