Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) regulates acetate- and β-hydroxybutyrate-induced milk fat synthesis by increasing FASN expression in mammary epithelial cells of dairy cows.

2021 
ABSTRACT Increasing acetate and β-hydroxybutyrate (BHB) supply to lactating cows will increase milk fat synthesis. However, the underlying molecular mechanism remains largely unknown. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein that promotes intracellular triacylglycerol accumulation. In the present study, using gene overexpression and knockdown, we detected the contributions of CIDEC on milk fat synthesis in mammary epithelial cells of dairy cows in the presence of acetate and BHB. The results showed that knockdown of CIDEC decreased fatty acid synthase (FASN) expression and intracellular triacylglycerol content, whereas overexpression of CIDEC had the opposite effect. The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) regulates cell growth and differentiation in the mammary gland. We demonstrated that the FASN promoter had a canonical C/EBPβ binding sequence. CEBPB overexpression upregulated FASN expression and milk fat synthesis, whereas CEBPB knockdown had the opposite effect. Moreover, knockdown of CEBPB attenuated the promoting effects of CIDEC on acetate- and BHB-induced FASN transcription. Taken together, our data showed that acetate and BHB induced FASN expression in mammary epithelial cells of dairy cows in a CIDEC-C/EBPβ-dependent manner, which provides new insights into the understanding of the molecular events involved in milk fat synthesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []