Geography-Aware Sequential Location Recommendation

2020 
Sequential location recommendation plays an important role in many applications such as mobility prediction, route planning and location-based advertisements. In spite of evolving from tensor factorization to RNN-based neural networks, existing methods did not make effective use of geographical information and suffered from the sparsity issue. To this end, we propose a Geography-aware sequential recommender based on the Self-Attention Network (GeoSAN for short) for location recommendation. On the one hand, we propose a new loss function based on importance sampling for optimization, to address the sparsity issue by emphasizing the use of informative negative samples. On the other hand, to make better use of geographical information, GeoSAN represents the hierarchical gridding of each GPS point with a self-attention based geography encoder. Moreover, we put forward geography-aware negative samplers to promote the informativeness of negative samples. We evaluate the proposed algorithm with three real-world LBSN datasets, and show that GeoSAN outperforms the state-of-the-art sequential location recommenders by 34.9%. The experimental results further verify significant effectiveness of the new loss function, geography encoder, and geography-aware negative samplers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    34
    Citations
    NaN
    KQI
    []