Entangled Photon Excited Fluorescence in Organic Materials: An Ultrafast Coincidence Detector

2017 
We report the fluorescence emission from organic systems selectively excited by entangled pairs of photons. We have demonstrated a linear dependence of this two-photon excited fluorescence on the excitation intensity which is a unique nonclassical feature of two-photon interactions induced by entangled photons. The entangled photon (ETPA) excited fluorescence has been detected in several organic molecules possessing a high entangled photon absorption cross section. The ETPA fluorescence showed a nonmonotonic dependence on the delay between signal and idler beams. The fluorescence signal was detectable within the signal–idler relative delay time interval of ∼100 fs. This time is comparable with the estimated entanglement time, TE, making the ETPA-excited fluorescence in organic materials an ideal ultrafast coincidence detector. These results have widespread impact in applications ranging from spectroscopy to chemical and biological sensing, imaging, and microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    51
    Citations
    NaN
    KQI
    []