Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia

2021 
Understanding the impact of global warming and the availability of renewable sources has motivated many countries to utilize solar and wind as an alternative to conventional energy sources. One county at the forefront in the development of these technologies is the Kingdom of Saudi Arabia (KSA). In KSA, investing in wind and solar energy is important because the country’s load demand is rapidly increasing, coupled with the over-reliance on fossil fuels. By fully utilizing the multi-year and the advanced battery storage modules in HOMER, in this paper, the techno-economic viability of utilizing a PV/wind/diesel/battery system for a remote location of Al-Jouf in the KSA has been investigated. The novelty of the work presented in this paper is that for the first time a PV/wind/diesel/battery system has been designed for the KSA, taking into account the impact of multi-year and advanced battery storage parameters such as the increase in fuel price, PV degradation, increase in the consumer load and battery degradation. Besides, due to the high temperatures experienced at Al-Jouf during the summer season, this paper investigates the sensitivity of ambient temperature on the system’s performance. The result shows that the multi-year input and battery degradation parameters have a significant impact on the system output over the 25 year lifetime of the project. PV production has dropped by 11.3%, while diesel production rose to 38% thereby increasing fuel consumption and CO2 emission. The system’s LCOE and NPC are 0.204 and USD206,919 respectively. According to the sensitivity analysis, ambient temperature has a significant impact on battery performance and PV power generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    3
    Citations
    NaN
    KQI
    []