High-Efficiency Organic Solar Cells Based on Asymmetric Acceptors Bearing One 3D Shape-Persistent Terminal Group

2021 
Three asymmetric non-fullerene acceptors (LL2, LL3, and LL4) are designed and synthesized with one norbornyl-modified 1,1-dicyanomethylene-3-indanone (CBIC) terminal group and one chlorinated 1,1-dicyanomethylene-3-indanone (IC-2Cl) terminal group. The three-dimensional shape-persistent CBIC terminal group can effectively enhance the solubility and tune the packing mode of acceptors. Compared with their symmetric counterparts (LL2-2Cl, LL3-2Cl, and LL4-2Cl) bearing two IC-2Cl terminals, the asymmetric acceptors show improved solubilities, giving rise to enhanced crystallinity and favored nanomorphology for charge transport in the blend films with PBDB-T. Asymmetric acceptors based organic solar cells (OSCs) also show much lower voltage loss due to their higher E and EQE values. Therefore, they exhibit 17−27% higher power conversion efficiency (PCE) than OSCs based on the corresponding symmetric acceptors. Among these six acceptors, LL3 with a central benzotriazole core shows the best PCE of 16.82% with an outstanding J of 26.97 mA cm and a low nonradiative voltage loss (ΔV) of 0.18 V, the best values for PBDB-T based OSCs. The J and ΔV also represent the best reported for asymmetric non-fullerene acceptors-based OSCs to date. The results demonstrate that the combination of the unique CBIC terminal group with the asymmetric strategy is a promising way to enhance the performance of OSCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    5
    Citations
    NaN
    KQI
    []