Facile Fabrication of Polyaniline/Graphene Composite Fibers as Electrodes for Fiber-Shaped Supercapacitors

2021 
Graphene fiber-based supercapacitors are known as the potential energy resources for wearable/flexible electronics. However, increasing their specific capacitance and energy density remains a significant challenge. This paper indicates a double layer capacitance of the graphene nanosheets accompanied by pseudocapacitive behavior of the polyaniline to prepare composite fibers with high capacitive response. The polyaniline/graphene composite fibers (PANI/GFs) were synthesized by the self-assembled strategy and chemical reduction by HI. The wrinkle architecture of graphene nanosheets and uniform dispersion of the polyaniline are beneficial to increase the internal electroactive sites and provide a stable structure for the composite fibers. The constructed fiber-shaped supercapacitors with solid-state electrolyte deliver an excellent areal specific capacitance of 370.2 mF cm−2 and an outstanding areal energy density of 12.9 μW h cm−2. The current work reveals the attractive potential of the as-synthesized composite fibers for constructing fiber-shaped supercapacitors with distinguished electrochemical performance, which can be applied in future flexible electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []