Procedures to Evaluate the Role of Heparan Sulfate on the Reactivity of Resistance and Conductance Arteries Ex Vivo.

2022 
Evidence is emerging that disruption of the endothelial glycocalyx might contribute importantly to arterial dysfunction in the context of diabetes. One approach to assess the integrity of the endothelium and the vascular smooth muscle cell layer, in the absence of neural, humoral, and mechanical influences, is by measuring arterial vasomotion ex vivo. Here we describe a procedure to assess non-receptor-mediated vasoconstriction, receptor-mediated vasoconstriction, and endothelium-dependent and -independent vasodilation, in resistance and conductance arteries pressurized to 60 mmHg. In addition to evaluating vasoreactivity using isobaric approaches, the same experimental set-up can be used to initiate a pressure gradient across the artery such that intraluminal, flow-mediated vasodilation can be measured. After recording endothelium-dependent vasodilation using isobaric or flow-mediated approaches, identical interventions can be completed in the presence of enzymes that cleave biologically active heparan sulfates into inactive disaccharide and oligosaccharide fragments to assess the contribution from: (a) endothelial-derived substances (e.g., nitric oxide via nitric oxide synthase inhibition); or (b) important components of the glycocalyx (e.g., removal of heparan sulfate via heparitinase III treatment). Here, we show that acute disruption of a predominant glycosaminoglycan i.e., heparan sulfate impairs intraluminal flow-mediated vasodilation in murine resistance arteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []