Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation.

2021 
Despite the availability of very large datasets and pretrained models, state-of-the-art question answering models remain susceptible to a variety of adversarial attacks and are still far from obtaining human-level language understanding. One proposed way forward is dynamic adversarial data collection, in which a human annotator attempts to create examples for which a model-in-the-loop fails. However, this approach comes at a higher cost per sample and slower pace of annotation, as model-adversarial data requires more annotator effort to generate. In this work, we investigate several answer selection, question generation, and filtering methods that form a synthetic adversarial data generation pipeline that takes human-generated adversarial samples and unannotated text to create synthetic question-answer pairs. Models trained on both synthetic and human-generated data outperform models not trained on synthetic adversarial data, and obtain state-of-the-art results on the AdversarialQA dataset with overall performance gains of 3.7F1. Furthermore, we find that training on the synthetic adversarial data improves model generalisation across domains for non-adversarial data, demonstrating gains on 9 of the 12 datasets for MRQA. Lastly, we find that our models become considerably more difficult to beat by human adversaries, with a drop in macro-averaged validated model error rate from 17.6% to 8.8% when compared to non-augmented models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []